Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance.

نویسندگان

  • Ana Lúcia Carvalho
  • Filipa S Cardoso
  • Andreas Bohn
  • Ana Rute Neves
  • Helena Santos
چکیده

Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering trehalose synthesis in Lactococcus lactis for 1 improved stress tolerance

1 Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da 11 República – EAN, 2780-157 Oeiras, Portugal. 12 13 14 Running title: Engineering trehalose synthesis in Lactococcus lactis 15 16 17 *Corresponding author: Helena Santos 18 E-Mail: [email protected]; Tel. +351-214469541; Fax. +351-214469543. 19 20 21 22 23 Copyright © 2011, American Society for Microbiology and...

متن کامل

Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis

PprI is a general switch protein that regulates the expression of certain proteins involved in pathways of cellular resistance in the extremophilic bacterium Deinococcus radiodurans. In this study, we transformed pprI into Lactococcus lactis strain MG1363 using the lactococcal shuttle vector pMG36e and investigated its effects on the tolerance and lactic acid production of L. lactis while under...

متن کامل

Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis.

Lactococcus lactis splits phosphorylated trehalose by the action of inorganic phosphate-dependent trehalose-6-phosphate phosphorylase (TrePP) in a novel catabolic pathway. TrePP was found to catalyze the reversible conversion of trehalose 6-phosphate into beta-glucose 1-phosphate and glucose 6-phosphate by measuring intermediate sugar phosphates in cell extracts from trehalose-cultivated lactoc...

متن کامل

Over-expression of BvMTSH, a fusion gene for maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase, enhances drought tolerance in transgenic rice

Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we u...

متن کامل

The Lactococcus lactis KF147 nonribosomal peptide synthetase/polyketide synthase system confers resistance to oxidative stress during growth on plant leaf tissue lysate

Strains of Lactococcus lactis isolated from plant tissues possess adaptations that support their survival and growth in plant-associated microbial habitats. We previously demonstrated that genes coding for a hybrid nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) system involved in production of an uncharacterized secondary metabolite are specifically induced in L. lactis KF147 du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 12  شماره 

صفحات  -

تاریخ انتشار 2011